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2 Profile Analysis

Abstract

This paper describes a methodology, called PAMS (Profile Analysis

via Multidimensional Scaling) designed to identify major patterns

of variables and to study the relationships into which those

patterns enter. Patterns of variables are here called profiles.

The PAMS procedure has been adapted to characteristics of the

NAEP data. SPSSR and SASR templates to implement the methodology

have been or are being developed. Adaptations of the general

PAMS approach for the study of course-taking patterns are

described. Multidimensional scaling is being used to identify

patterns of course-taking in mathematics and science, and

preliminary results from these analyses are reported.
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to Ascertain Course-taking Patterns:

Mathematics and Science Course-taking Patterns

Mark L. Davison, Ernest C. Davenport Jr., John Bielinski,

Shuai Ding, Haijiang Kuang, Fuliao Li,

and Katherine Seiden
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Many of the research questions to which NAEP data can be

applied involve patterns of student characteristics, patterns of

instructional factors, patterns of teacher characteristics, etc.

For instance, one can ask questions such as the following. "What

student attitude and behavior patterns are associated with better

performance?" "Do similar patterns of effort exist for minority

and majority students?" "Which behavioral and home environment

patterns are associated with school success?"

If behaviors, attitudes, and other characteristics exist as

patterned wholes (rather than unintegrated, aggregates of

characteristics), then it is worthwhile for researchers to

investigate these patterns and their relationships to outcome

variables. Davison (Davison & Skay, 1991; Davison, 1994;

Davison, Gasser & Ding, 1995) describes a multidimensional

scaling (MDS) method for identifying the major patternings of

variables in a population. The method is called Profile Analysis

via Multidimensional Scaling (PAMS) and the major patternings are
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called "prototypical profiles." In PAMS, each multidimensional

scaling dimension corresponds to a prototypical profile of

student (teacher, chool, etc.) characteristics. Each

observation is characterized by a level parameter and a set of

weights, one weight for each dimension, which index the degree of

resemblance between the observations' profile and a prototypical

profile dimension.

The concept of a prototypical profile reminds one of

typologies. Cluster analysis, rather than multidimensonal

scaling, has been the major technique used to study typologies

(i.e. Bailey, 1994; Lorr, 1994). rluster analysis divides

observations (people) into discrete categories. MDS and PAMS

represent structure in terms of continuous dimensions

corresponding to prototypical profiles. In cluster analysis, one

most commonly talks about observations as belonging or not

belonging to clusters. In PAMS, each observation corresponds to

an observed profile of scores, and one talks about an

observation's degree of resemblance to a prototypical profile.

Observed profiles are represented as linear combinations of PAMS

pz-*totypical profiles; therefore, an actual profile may closely

resemble a single prototypical profile or it may be a mixture of

several protc,typical profiles.

One area in which patterns are potentially important is

course-taking in mathematics and science. Recent studies have

examined the relationship between course-taking and achievement.

For the most part, these studies have counted the number of
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formal or pre-college math and science courses taken and related

that number to achievement (i.e. Davenport, 1992; Jones, Burton &

Davenport, 1984; Jones, Beduis & Davenport, 1985; Noble & McNabb,

1984; Welch, Anderson & Harris, 1985). Other than distinguishing

formal and informal mathematics courses, these studies have paid

relatively little attention to the pattern of the mathematics and

science coursework. Further progress in the study of mathematics

and science course-taking requires identification of the major

course-taking patterns, so that one can study the relationship of

achievement to both type and number of courses. Therefore, one

reason for studying course-taking patterns in mathematics and

science is to refine our knowledge of those patterns. This

refinement can directly lead to a better understanding of the

relationship between course-taking and achievement.

The second reason for studying mathematics and science,

particularly mathematics, is that mathematics has some well-

defined sequences. These sequences provide a partial validity

check on the method. That is, the method should successfully

recover these sequences if it is functioning appropriately.

This paper outlines the basic PANS model, which has guided

much of this research, and the analysis based on that model. We

then describe some modifications of the basic PAMS procedure

which we have used for analysis of transcript data. Finally, we

present some sample results based on math and science course-

taking data. SPSSR for WINDOWS R and SASR templates for fitting

the PAMS model have been prepared and are available from the

6
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authors (Davisor & Davenport, 1994; Davenport & Davison, 1995)1.

A full PAMS analysis involves both deriving prototypical profiles

via MDS and estimating correspondence weights. In this paper,

the focus is on the derivation of the prototypical profiles.

The PAMS model and Analysis

One way to explain the PAMS model is to contrast it with the

well known factor analytic approach. The description of the

factor model will be rather superficial, because we present it

only as a contrast with PAMS. In contrast to factor analysis,

with its individual differences perspective, PAMS is more

idiographic. To see the difference, let's look at Figure 1.

Insert Figure 1 about here.

Figure 1 contains a data matrix in which rows represent

people (the observations) and columns represent measures. Let an

element of the matrix, mi, be the score of subject s on

individual differences measure i. In factor analysis, the focus

is on the columns, each of which is an individual differences

variable, measure i. Let mi be the vector of scores in column i.

Factor analysis posits a small set of "latent" individual

differences variables, the factors or components fk (k =

1,...,K), such that the observed individual differences variables

1

SPSS is a registered trademark of SPSS, Inc. Windows is a
registered trademark of Microsoft, Inc. SAS is a registered
trademark of SAS Institute, Inc.

7



7 Profile Analysis

mi can be represented as linear combinations of the fk:

In; = + e.k-ik k (1)

where aik is a weight for individual differences measure i on

factor k, and ei is a vector of deviations which includes both

error, and if the common factor model rather than the components

model, specific factor variance. These "latent" individual

differences variables are represented to the right of the data

matrix in Figure 1.

In the PAMS model, (Davison & Skay, 1991; Davison, 1994) the

focus is on the rows. Let ms be the row vector of scores for

subject s. Whereas factor analysis posits a set of latent

individual differences variables, the factors, which can account

for the observed column variables, PAMS posits a latent set of

profiles such that each observed row profile can be represented

as a linear combination of the latent row profiles:

ras = E w x + es + esk-$k k (2)

where Wk is a weight for subject s on prototypical profile k,

cs is a constant vector for subject s, and es is a vector of

deviations. Except for the use of some vector notation, Equation

2 is what has been called elsewhere the vector model (e.g.

Tucker, 1960; Davison & Skay, 1991), because each subject's

8
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profile of data m can be represented as. a vector in the space

spanned by the prototypical profiles xk. As we shall see, each

prototypical profile corresponds to a dimension in a

multidimensional scaling analysis.

The individual differences parameters in Equation 2 deserve

some explanation. The subject weight, wk, is a weight for the

observed profile of subject s on prototypical profile k. It

indexes the direction and degree of linear association between

the actual profile of subject s and the latent, prototypical

profile k. If Wk is positive and large, then subject s tends to

have his or her highest (and lowest scores) on the same variables

as prototypical profile k. If wk equals zero, then there is no

linear association between observed profile s and prototypical

profile k. If Wk is negative, then the highest scores for

observed subject s tend to fall on the measures which have the

lowest scores in prototypical profile k. The parameter c is a

level parameter which indexes the overall height of the profile

for subject s. Thus, the level of profile s is represented by a

single parameter, c, and the shape (pattern and scatter) are

represented as a linear combination of the prototypical profiles

Xk .

Both the factor model of Equation 1 and the PAMS model of

Equation 2 are linear models. In the factor model, the weights

are associated with observed individual differences variables,

and each observed individual differences variable is represented

as a linear combination of the latent individual differences

9
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variables, the factors. In the PAMS model, weights are

associated with subjects, and each subject's observed profile of

responses is represented as a linear combination of latent,

prototypical profiles, xv plus a level parameter, c.

The difference between the factor and PAMS models are shown

schematically in Figure 1. The factor model represents the

columns of the data matrix as linear combinations of the factor

variables shown to the right of the data matrix. The PAMS model

represents the rows of the data matrix as linear combinations of

the prototypical profile variables shown below the data matrix.

Estimating Parameters in the PAMS model. There are a

variety of methods for estimating parameters in the PAMS model

itself or closely related models (e.g. Weller & Romney, 1990).

We have employed a procedure outlined by Davison and Skay (1991).

It involves two steps: estimating the prototypical profiles, 3ck,

using MDS and then estimating the subject parameters wk, c

through regression of the subject data, ms onto the prototypical

profiles Irk.

In applying MDS to estimate the prototypical profiles, the

approach outlined by Davison and Skay (1991) relies on the

standard, squared Euclidean distance measure defined over pairs

of measures (i, i'):

621i, = (1/S);(m - rn 0)2 (3)

where S is the number of subjects. Let I be the number of

7E0
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measures (or columns in Figure 1). If one assumes homogeneity

of error variances across people s and measures i and that

and

then

0 = EiXik for all k,

S = Esw2sk for all k,

0 = Esw kW k, for all (k, k') ,

0 = Ese ie i, for all (i, i')

0 = E e (E w x. + c )k-sk-lk

62ii, = Ek(Xik - Xik,) 2 + 20.2(e).

(4a)

(4b)

(4c)

(4d)

(4e)

(5)

In short, the mean squared Euclidean distances between pairs of

observed subject profiles, defined in Equation 3, is within an

additive constant of squared Euclidean distances between points

representing measures (i, i') in a space defined by the K

prototypical profiles. As a result, MDS can be used to estimate

the prototypical profiles. Each dimension will correspond to a

profile. In the results section below, we will illustrate the

interpretation of profiles (dimensions) resulting from such an

analysis.

Once the MDS has been completed, the K prototypical profile

vectors, xk, have been estimated. Let X be a matrix with I rows

and K+1 columns. The first K columns contain the MDS solution;

that is, the K prototypical profile column vectors xk. The last

1 1
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column is a vector of l's. Let W be a matrix with S rows, one

for each subject, and K+1 columns. The first k columns contain

the subject weights wk and the last column contains the level

parameters cs. Then Equation 2 can be rewritten in matrix form

as

M = Mt' (6)

where M is the SxI matrix of data in Figure 2. Given the

estimate of X provided by MDS and the raw data matrix M, the

unknown matrix of subject weights and level parameters can be

estimated as

W = MX(X'70.1. (7)

Davison and Davenport (1994; Davenport & Davison, 1995) have

created an SPSSR and SASR templates which executes the steps

outlined above.

While the full PAMS analysis consists of both steps--

estimating prototypical profiles xi( and subject parameters, w

and c -- the focus in this paper is on estimation of the

prototypical profiles, particularly as that estimation is applied

to transcript data.

Deviations from the PAMS Model. The PAMS model assumes

continuous variables mi. The transcript data on which we have

been focusing is dichotomous. That is, we have coded the data so

12
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that mi = 1 if student s has taken course i long enough to earn

at least .20 Carnegie units, and mi = 0 otherwise. Furthermore,

the proportions of students taking some of the courses are very

small. Therefore, based in part on trial and error, we have

modified the PANS approach for estimation of prototypical course-

taking profiles as follows.

Instead of using the squared Euclidean distance measure of

proximity, we have been using (1 - Jiv) where Jo, is the Jaccard

measure, also known as the similarity ratio, defined over all

possible pairs of courses (i, i'). Figure 2 shows the usual 2x2

contingency table for two courses. Let (1 - Jiv) = TH, be the

proximity measure used to obtain the results below:

r- = (b+ c)/(a + b + c). (8)

In words, the numerator of TH, is the number of people who took

one and only one of the two courses (i, i')'; the denominator is

the number who took at least one. Of those who took at least one

of the two courses, Tip is the proportion who took only one.

Insert Figure 2 here.

When the data are dichotomous, TH, is related, but not

identical to, the squared Euclidean distance in Equation 3. In

Equation 3, S is the total number of subjects. If S on the right

side of Equation 3 were replaced by SH, (the number of people who

1 3

1
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took at least one of the two courses) and the variable msi is

dichotomous, then the right side of Equation 3 would equal Tip.

Using Tip as the proximity measure in our analyses below is

quite ad hoc. But, as we shall see, it yields generally

interpretable results. Theoretically, however, we have no model

of the data mis to suggest as a justification for Tip. That is,

we have no counterpart of Equation 2 to offer from which one can

derive Tip as an appropriate proximity measure.

Since Tip would seem to have an absolute zero, we have

assumed ratio level data in our MDS analyses, also an option in

the PAMS SPSSR template. Furthermore, where a Varimax rotation

(Kaiser, 1958) yielded a more interpretable solution, we have

performed such a rotation.

Standard Errors. Few applications of MDS include estimates

of standard errors around scale values. We have developed a

computationally intensive approach to estimation of errors using

resampling. In this approach, we begin with an estimate of the

MDS coordinate matrix X derived from the full sample; that is, in

computing the proximity matrix on which X is based, the

population weights are used. Here X is an unaugmented matrix

with I rows and K columns.

Next, using the NAEP transcript resampling weights, we

repeat the MDS scaling process B times. Let Xb be the MDS

solution from replication b. Like X, Xb will have I rows and K

columns. To derive the proximity matrix for the bth replication,

the hth set of sampling weights is applied to the raw data in

14
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computing the proximity matrix on which the bth MDS solution is

based. Let xu be the coordinate of course i along prototypical

dimension k in X and let xbik be the corresponding element of Xb.

Then, the sampling variability of xu is estimated as follows:

(Eb(cik xbik)2/ (B 1) 31/2.

Because MDS solutions are determined only up to a rotation and

uniform stretching or shrinking of the axis, we have applied a

rotation to congruence (Davison, 1983; Gower, 1971, 1975;

Schonemann & Carroll, 1970) in the process of deriving matrix Xb.

That is, let e be the raw MDS coordinate matrix derived from

the proximity matrix using the bth resampling weights. Let T and

c be the orthonormal transformation matrix and scalar constant

relating Xb and Xb* Xb = Ce*T. Let tZ and V be the characteristic

roots and vectors of X,Ire'X. Then T = e,mrenw. If we let

X = Xb** b*T, then c = (E(i,k)xb**id_Cik)/(Eci,k)}{b**21k)

Methods

The analyses reported below are based on the 1990 High

School Transcript Study conducted by Westat, Inc. for the

National Center for Education Statistics.

Sample.

Over 23,000 students who graduated from American high

schools in 1990 were selected as the sample; 21,784 transcripts

were received. The transcripts, along with other school
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materials, such as course catalogs and student handbooks, were

solicited from approximately 283 public, Catholic, and other

private schools representing a range of geographic areas and

school sizes. The sample is diverse in terms of cultural

background and ethnic composition. Legum, Caldwell, Goksel,

Haynes, Hynson, Rust, and Blecher (1993) contains a description

of the sample.

Course Coding System. Courses were coded using the

Classification for Secondary School Courses (CSSC) coding system.

Tables 1 and 2 show tile courses included in the analyses below,

along with the first two digits of its CSSC course code. The

first two digits indicate the general content area of the course;

e.g 26 = life sciences, 27 = mathematics, 40 = physical

sciences, etc. We have assigned an abbreviation to each course

used in later tables and figures, and these abbreviations are

shown in the last columns of Tables 1 and 2.

Insert Tables 1 and 2 here.

In course titles, certain descriptive terms are used in the

CSSC system:

o Resource--remedial; courses which serve as tutoring

vehicles or subject area services

o General Bkills--functional level

o Basic--simplified, fundamental, slower paced

o Applied--emphasis on application over theory,

16
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application to work setting

o Introductorybasic, survey-level course

o Informal--more practical and occupational applications

oriented

o Formal--middle-level; equal emphasis on theory and

application

o Unifiedspecial, inter/multi-disciplinary study

o Review--special preparations for SAT and ACT college

entrance examinations

o Honors--courses which prepare students for post-

secondary academic study

o Advancedequivalent to Advanced Placement; preparation

for College Board Advanced Placement examinations

Math Courses. In the CSSC, mathematics courses are

designated 27XXXX. In addition, some mathematics related courses

can be found in other academic areas, such as business (07XXXX)

and computer science (11XXXX). There are also functional level

courses (54XXXX) and resource courses (56XXXX).

With some exceptions, primarily resource courses, courses

were dropped if they had less than 300 students. We began by

looking only at courses in mathematics, 27XXXX, and then we

expanded our search to include mathematics related courses with a

significant enrollment. A few computer science and business

courses were included as a result. Courses were eliminated or

disregarded based on several criteria. Linear Algebra,

Mathematics Tutoring, and Science Mathematics were all dropped

17
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due to low frequencies. Independent Study Mathematics, Other

Mathematics, and Other Pure Mathematics were considered too vague

to be meaningful in a scaling procedure. After reading the

course description, Mathematics in the Arts was discarded as not

being very mathematically oriented.

Where it seemed sensible, small enrollment courses were

combined with other courses to avoid dropping them altogether.

Students who took a course entitled Calculus and Analytic

Geometry were credited with having studied Calculus and having

studied Analytic Geometry. Similarly, Algebra and Analytic

Geometry were combined with Algebra 3 and with Analytic Geometry.

Trigonometry and Solid Geometry were combined with Trigonometry

and with Solid Geometry. The individual courses Probability and

Statistics were combined with the single course Probability and

Statistics. Computer Math 1 and 2 were combined into Computer

Math. Business Math 1 and 2, Agricultural Math, and Financial

Math were all combined under the heading of Business Math.

Functional Consumer Math, Functional Vocational Math, and Special

Education Math were all collapsed into General Math Skills.

Vocational Math and Technical Math were combined under the

heading Technical Math. Basic Math 2, 3, and 4 were combined

under the heading Basic Math 2. Resource General Math includes

those who did and did not take it for credit.

Science Courses. Life sciences courses are designated

26XXXX and physical sciences courses are designated 40XXXX, but

some science related courses can be found under other headings;

18
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e.g engineering, agricultural science, etc. Courses outside the

26XXXX and 40XXX designations (including resource science

courses) were dropped, primarily due to low enrollments in this

sample. Three "miscellaneous" categories were c-eated: Other

Formal Physical Sciences, Other Formal Life SciP,nces, and Other

Informal Physical Sciences. Advanced Physiology was combined

with Physiology.

The analyses below are based on 53 variables for each

student, 31 corresponding to the math courses in Table 1 and 22

corresponding to the science courses in Table 2. Each variable

was scored dichotomously: 1 if the student had earned at least

.25 Carregie units and 0 otherwise.

Results

To illustrate coursework prototypical profiles, this section

presents the MDS dimensions from an analysis of the mathematics

and science coursework data. The proximity measure employed was

(1 - jii,) where is the Jaccard coefficient for the courses

i'). That is, the proximity measure equals the number of

people who took only one of the two courses expressed as a

proportion of those who took at least one.

In MDS, dimensions can be reflected without loss of fit. It

is completely arbitrary as to which end is positive and which end

is negative. This means that there are potentially tWo profiles

for each dimension. The first profile for a dimension is marked

by courses at the positive end; we call this the dimension's

19
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profile. The second profile for a dimension is marked by courses

at the negative end; we call this the dimension's mirror image

profile. To illustrate the relationship between a dimension

profile and its mirror image, we have plotted both (Figures 3 and

4) for Dimension 1 in Table 3. For all other dimensions in

Tables 3 and 4, however, we have plotted only the dimension

profile.

In what follows, dimension profiles (and mirror images) are

interpreted in terms of their highest points or peaks.

Particular attention has been paid to courses with scale values

above 1.00; and these courses are identified in the figures

below. Given the normalization used by ALSCAL whereby the sum of

squared scale values in a solution equals IK, the root mean

square of all scale values equals 1.00. Therefore, courses with

scale values above one are above the root mean square of all

scale values. As will become apparent, however, some of the

courses with scale values above 1.00 figure more prominently in

our interpretations than do others.

Mathematics Courses

Table 3 shows the four dimensional solution for the

mathematics data obtained from the ALSCAL program (Young &

Lewyckyz, 1979). The fit measures for this solution were S-

STRESS = .363, STRESS = .258, and R2 = .349. The first two of

these are least squares, badness-offit measures which range

between 0 (perfect fit) and 1 (total lack of fit). The last of

these fit measures is the squared correlation between the model
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predicted distances and the data. Because the number of courses

is relatively large and because the data were treated as ratio

scaled data, rather than ordinal data, these fit measures are

poorer than those obtained from most applications of MDS. The

data were treated as ratio scaled data because this proximity

measure seems to have an absolute zero (i.e. nobody takes one of

the two courses without taking both); furthermore, inspection of

the proximities suggested that the sizes of the intervals

contained meaningful information.

Figure 3 shows the first dimension in Table 3 plotted as a

profile. The highest three points in this profile correspond to

Algebra 1 (A1g1), Geometry (Geo), and Algebra 2 (A1g2). This

profile is most prominently marked by the standard three formal,

high school mathematics courses. The other peaks in Figure 3

correspond to Trigonometry (Trig), Algebra 3 (A1g3), Analytic

Geometry (AnGeo), and Technical Mathematics (Tech, which consists

of applied algebra and geometry; technical training; numerical

trigonometry). Because this profile is marked primarily by

Algebra 1, Geometry, and Algebra 2, we have called it the

Standard Formal Sequence.

Insert Figures 3 and 4 here.

Figure 4 shows the mirror image profile for Dimension 1 in

Table 3. It has three prominent peaks, Unified Mathematics 1

(MlUnif), Unified Mathematics 2 (M2Unif), and Unified Mathematics

21
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3 (M3Unif). These three courses present logic, algebra,

geometry, trigonometry, and probability in a unified approach.

We call this Dimension 1 Mirror Image Profile the Unified

Sequence. Not surprisingly, the Unified Sequence and the

Standard, Formal Sequence fall at opposite ends of a dimension,

suggesting that those who study these subjects in a unified

approach by taking MlUnif, M2Unif, and M3Unif do not then take

separate courses in algebra, geometry, and trigonometry. A

fourth peak in the profile, Basic Math 1 (BasM1) does not seem to

fit with the remaining prominent courses in the profile.

The Dimension 2 Profile, shown in Figure 5, is marked most

prominently by two calculus courses, Advanced Placement Calculus

(CFilAdv) and Calculus (Calc). Introduction to Analysis (IntAnal)

and M3Uni, courses which commonly precede calculus, are the next

most prominent courses in this profile. We call this the

Calculus Profile, because it contains the calculus courses and

courses which would precede them.

Insert Figure 5 here.

The three most prominent courses shown in Figure 5 at the

negative end of Dimension 2, which form the mirror image profile,

have little in common except that they fall outside any formal

mathematics sequence. They are Pre-algebra (PreAlg), Business

Mathematics (BusM), and General Mathematics 1 (M1Gen). We call

this the Pre-formal Profile. The remaining three courses marked

42
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in this profile constitute a sequence in which algebra 1 is

spread over two years; Algebra 1 Part 1 (A1gP1), and Algebra 1

Part 2 (A1gP2); and Geometry is studied in a more applied,

simplified fashion, Informal Geometry (GeoInf). One or more of

these three courses; AlgPl, A1gP2, and GeoInf; can follow one of

the Preformal Sequence course (most probably PreAlg or M1Gen) in

a students course of study.

The Dimension 3 Profile, Figure 6, is marked most

prominently by three courses Computer Mathematics (CompM), Review

Mathematics (MRev), and Probability and Statistics (ProbStat).

Review Mathematics is described as college entrance exam

practice, an overview course with reading questions. Computer

Mathematics covers simple calculators, flow charts, elementary

programming and mathematical applications. These appear to be

courses which go beyond basic mathematics, but which do not cover

standard topics in algebra, geometry, or trigonometry. We call

this the Beyond t,e Basics Profile.

Insert Figure 6 here.

The Dimension 3 Mirror Image is marked by basic, informal

mathematics sequences: General Mathematics 1 and 2 (M1Gen and

M2Gen) and Basic Math 1 and 2 (BasM1 and BasM2) as well as

Consumer Math (ConM). We call this the Informal Sequence

Profile. Some of these courses tend to emphasize applied

business or personal finance. Others are used to prepare for

23
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competency exams.

From the standpoint of interpretation, Dimension 4 (Figure

7) poses some difficult problems. The positive end of Dimension

4 is most prominently marked by marked by Resource General

Mathematics (ResGM), General Mathematics Skills (GenMS), and

Resource Consumer Math (ResCM). We call this the Functional Math

Skills Profile. The remaining two peaks in the profile, Algebra

3 and Analytic Geometry, simply do not fit the profile.

Insert Figure 7 here.

The Dimension 4 Mirror Image Profile is also a bit messy.

It is marked most prominently by Algebra/Trigonometry (LlgTrig).

After that, it is marked by Algebra 1 Part 1, Algebra 1 Part 2,

Informal Geometry, and Plane Geometry. The majority of these

courses; Algebra 1 Part 1, Algebra 1 Part 2, and Informal

Geometry; constitute a variation on the standard sequence in

which Algebra 1 is spread over two years, and geometry is covered

in a more applied, somewhat simplified fashion. We call this the

Basic Formal Sequence.

The four dimensions define eight profiles, three of which

appear to be college preparatory: the Standard Sequence of

Algebra 1, Algebra 2, Geometry, Trigonometry, and Analytic

Geometry; the Unified Mathematics Sequence in which algebra,

geometry, logic, trigonometry and statistics are taught in a

unified fashion, and the Calculus Profile. Three of the profiles
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appear to be non-college preparatory: the Pre-Formal Profile

consisting of General Math 1, Pre-algebra, and Business Math 1;

the Informal Sequences Profile consisting of General Math 1 and

2, Business Math 1 and 2, and Consumer Math, and the Functional

Math Profile consisting of Resource General Math, General Math

Skills, and Resource Consumer Math. The remaining two profiles

are more difficult to classify on a college preparatory basis.

The Alternative, Standard Profile includes courses which cover

algebra and geometry, but at a slower pace or in a less formal

fashion. The Beyond Basic Profile includes one course clearly

designed for a college bound audience, Review Mathematics, as

well as Computer Mathematics and Probability and Statistics

Science

Table 4 and Figures 8-12 show the five dimensional solution

for the science data obtained from the ALSCAL program (Young &

Lewyckyz, 1979). The fit measures for this solution were S-

STRESS = .277, STRESS = .191, and R2 = .482. Because the number

of courses is somewhat large and the data were treated as ratio-

scaled data, rather than ordinal, these fit measures are poorer

than those obtained from most applications of MDS. A Varimax

rotation (Kaiser, 1958) was applied to this solution to improve

interpretability. As will become apparent below, the mirror

image science profiles are poorly defined, a result which we

attribute to the Varimax rotation. That is, the Varimax rotated

science dimensions in Table 4 do nct have the strong bipolar

character of the unrotated mathematics dimensions in Table 3.
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Insert Figures 8-12 here.

Figure 8 shows the profile plot of Dimension 1. The profile

is most prominently marked by Biology Honors 1 (HonBio1), Biology

Advanced (AdvBio), Chemistry 2 (Chem2), and Physics 2 (Phys2).

It should be noted that Chemistry 2 and Physics 2 include

Advanced Placement Chemistry and Physics. While this represents

the classic high school sequence (biology, chemistry, and

physics) it is the most advanced, rigorous form of the sequence.

We refer to this as the Advanced Standard Sec,uence.

There are three marginally prominent (scale values slightly

over 1.00) courses in the mirror image profile, Biology Basic

(BasBiol), Science Unified (UniSci), and Earth Science (Esci).

This combination contains a common ninth grade course plus two

rather basic courses, one in biology and one covering both

physical and life sciences. We do not refer to this combination

further, and so we do not label it.

Figure 9 shows the Dimension 2 Profile, marked most

prominently by Biology General 1, Chemistry 1, and Physics 1. We

call this the Standard Sequence. It is the same sequence as

Dimension 1, but at a less advanced level.

The mirror image profile is prominently marked by only one

course, Other Informal Physical Science. To a lesser extent, it

is marked by Other Formal Physical Science and Physical Science

Applied. This appears to be a profile marked by physical science

6 6
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courses other than the standard ones.

The Dimension 3 profile, Figure 10, is marked most

prominently by Chemistry Introductory, Earth Science College

Preparatory, and Physics General. This would appear to be an

alternative to the standard sequence which replaces biology with

a college preparatory earth science, and which covers physics and

chemistry at a more basic level than does the Standard Sequence.

We call this the Alternative Sequence. The mirror image is

marked only by Science Unified.

The Dimension 4 profile, Figure 11, is marked by Ecology and

Marine Biology. This appears to be a combination of courses

which would interest someone primarily interested in the Life

Sciences and which is rare in the high school curriculum. The

Dimension 4 Mirror Image profile seems to parallel, in some

respects, the Dimension 1 Mirror Image. That is, it contains a

biology course, General Biology, and a course covering physical

and life sciences in an integrated, basic fashion, Unified

Science. It also contains the Other Informal Physics category.

The last Dimension profile, Figure 12, is marked by Biology

Basic, Physical Science Applied, and Earth Science. This appears

to be a combination which is composed of Earth Science, commonly

taught in the Grade 9, a life science course and one course

covering both chemistry and physics. Both Physical Science

Applied and Biology Basic appear to provide an applied, and

possibly simplified presentation of the biology, chemistry, and

physics taught in the standard sequence. We call this the Basic

2)1
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In addition, there are some deviations from the common

perception. First, Earth Science College Preparatory is an

alternative to biology, chemistry and,physics. Finally, a number

of students appear to be taking courses more commonly associated

with college curricula; e.g. human physiology, marine biology,

and the courses lumped into our Other Formal Life Sciences and

Other Formal Physical Sciences. We speculate that many of these

are indeed college courses taken by students in districts (or

states such as Minnesota) which allow high school students to

take college courses, either on local college campuses or in the

high school, and use them to meet high school requirements.

Summary and Conclusions

The methodological developments in this project are

proceeding on two levels of generality. At the most general

level, we are developing SASR and SPSSR templates and macros to

implement a Profile Analysis via Multidimensional Scaling (PAMS)

with NAEP data. These templates are not limited to course-taking

behavior. The analysis in these templates is based on the model

of Equation 2. The model posits a small number of K "latent"

profiles, called prototypical profiles, and it assumes that

observed profiles can be represented as linear combinations of

the prototypical profiles. On one level, the model is simple in

that it posits a small number of prototypical profiles. But it

is also powerful in that it can account for a very large number

of different observed profiles as linear combinations of the

prototypes.
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Sequence. It should be noted that there appears to be an

alternative to this Basic Sequence consisting of Biology Basic,

Chemistry Introductory, and Physics General which appears in the

unrotated solution (but not shown here). This alternative to the

Basic Sequence seems to present science in a more applied,

simplified manner but splits the physical sciences into two

separate courses in physics and chemistry. The mirror image of

this profile is prominently marked by Other Formal Life Sciences,

Human Physiology, and Other Formal Physical Science. This

appears to be a combination of courses, probably taken by the

college oriented with more emphasis in the Life Sciences than the

Physical Sciences. Some courses in this group are more commonly

found in college curricula than high school curricula.

There is, we think, a common perception that high school

science consists of biology, chemistry and physics. Our analyses

support this perception but add some complexity to it. There

does appear to be a Standard Sequence; Biology General 1,

Chemistry 1, and Physics 1. There is also a more rigorous

counterpart to that sequence composed of Biology Honors or

Biology Advanced, Chemistry 2 (which includes Advanced Placement

Chemistry) and Physics 2 (which includes Advanced Placement

Physics). There also appears to be a more applied, simplified

counterpart to the basic sequence composed of Biology Basic plus

one course covering chemistry and physics, Physical Science

Applied, or two courses, Chemistry Introductury and Physics

General.
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The model leads to a multidimensional scaling analysis of

squared Euclidean distances among all possible pairs of measures.

The dimensions can then be plotted as profiles, such as those in

Figures 3 - 12. These profiles are interpreted in terms of

prominent scores.

While the analyses reported here have proceeded no further

than the MDS, the next step can be the estimation of subject

correspondence weights, wk, in Equation 2. The weight wk

indexes the correspondence between the observed profile of

subject s and prototypical profile k. If wk = 0, there is no

linear correspondence between the observed profile of subject s

and prototypical profile k. If the weight is positive, then

there is a positive linear association between the observed

profile of subject s and prototypical profile k. A negative

weight signifies a negative association between the observed and

latent profiles. One can use the correspondence weights to study

a variety of issues. For instance, one can use the

correspondence weights to study gender differences. If there is

a gender difference in mean correspondence weights along

dimension k favoring males, then on average, male profiles more

closely resemble the prototypical profile than do female

profiles. Further, one can study correlates of a profile. For

instance, if there is a positive correlation between

correspondence weights along dimension k and SES, then that

suggests the observed profiles of upper SES subjects tend to

resemble the prototypical profile more closely than do the
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observed profiles of lower SES subjects.

At this point, we have written SPSSR (Davison & Davenport,

1994) and SASR (Davenport & Davison, 1995) templates to compute

an appropriate proximity matrix, apply MDS to the proximity

matrix to estimate the dimensions, and compute the subject

correspondence weights. Our next step is to develop SPSSR and

SASR macros which will estimate the standard errors on the MDS

scale values through resampling.

At a less general level, we have been adapting the PAMS

approach for the study of course-taking patterns. Course-taking

tends to be dichotomous: one has or has not taken a course.

Linear models, such as that in Equation 2, tend to provide only

rough approximations of dichotomous variables. Furthermore, the

marginal in course-taking behavior can be very extreme. We have

begun our adaptation of the PAMS approach by experimenting with

proximity measures which are appropriate for dichotomous data and

which intuitively seem suitable for variables with extreme

marginal. This has led us to the Jaccard coefficient, Jii or

more accurately (1 - Jw) which expresses the number of people

who have taken exactly one of the two courses (i, i') expre.3ed

as a proportion of those who took at least one of the two

courses. The measure itself seems intuitively appealing for

course-taking behavior and the MDS solutions based on it make

sense, for the most part. If there were a response model,

analogous to Equation 2, which led to the proximity measure (1 -

4,), just as Equation 2 leads to the squared Euclidean distance
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proximity measure in Equation 3, then our course-taking

developments would rest on a much firmer theoretical foundation.

Not all of the developments in this project are or will be

methodological. To date, our preliminary results are the MDS

analyses reported in Tables 3 and 4 and the various figures.

Major results from the mathematics analyses suggest three

contrasting sequences. The first is composed first and foremost

of Algebra 1, Algebra 2, and Geometry; these three core courses

can be supplemented by Trigonometry and Analytic Geometry. To

our surprise, Technical Mathematics emerged in this grouping, a

course which seems to be taken with one or more of the basic

three. A second sequence involves the same basic subject areas--

algebra, geometry, and trigonometry--taught in a unified fashion.

Logic and statistics can be included in this unified approach.

Thirdly, there seems to be a somewhat simplified, slower paced

sequence in which Algebra 1 is taught over two years and geometry

is taught in a more simplified, slower paced, and/or applied

approach.

There are also groups of courses which do not explicitly

include algebra and geometry. For the seemingly college

oriented, there are courses to review for entrance exams

(Mathematics Review), courses in Computer Mathematics, and

courses in Probability and Statistics. For students with special

needs, there are courses in General Math Skills, Resource

Consumer Math, and Resource General Math. And finally, there are

groups of courses in Pre-Algebra, General Math, Basic Math,

32
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Consumer Math, and Business Math which can be terminal courses,

preparation for competency exams, or preparation for algebra.

High school science is most commonly perceived as biology,

chemistry, and physics. However, there appear to be three

variations on this sequence; a more advanced sequence consisting

of Advanced or Honors Biology, Chemistry 2, and Physics 2; a

standard sequence consisting of General Biology 1, Chemistry 1,

and Physics 1; and a basic sequence consisting of Basic Biology,

plus a single course in Applied Physical Science or separate

courses in Introductory Chemistry and General Physics.

Furthermore, it would appear that some students have the

opportunity to depart from these sequences with courses, such as

Human Physiology or Marine Biology, or the many courses we have

"lumped" together under Other Formal Physical Sciences, Other

Formal Life Sciences, and Other Informal Physical Sciences. Some

of these, such as Human Physiology and Marine Biology, are

courses more commonly associated with college curricula, rather

than high school curricula.

We were inconsistent in our collapsing of courses in math

versus science, and on hindsight, our decisions in math were

probably more sound. First, in math (but not science) we

retained various resource and functional courses. Given the

emphasis on inclusion of special needs students in educational

data, we should have done the same in science. Second, in

mathematics, we avoided using miscellaneous categories because

they are vague and can lead to uninterpretable profiles. In

33
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science, we included three miscellaneous categories; Other Formal

Physical Sciences, Other Formal Life Sciences, and Other Informal

Physical Sciences. As feared, they led to some uninterpretable

profiles, the Dimension 2 and 5 mirror image profiles, composed

solely or primarily of miscellaneous courses. We need to redo

our science analysis adding in resource and functional courses

and eliminating the vague, miscellaneous categories.

Our next steps in this project are as follows.

Methodologically, we are developing SPSSR and SASR templates

which use resampling to estimate standard errors on MDS scale

values. Substantively, we need to redo our science solutions

deleting miscellaneous categories and adding in the re-source and

functional categories. The stability of math and science MDS

solutions across gender and ethnic groups needs investigation.

Ultimately, we need to examine differences in NAEP achievement

scores across different types of sequences, and we need to

examine differences in participation rates by gender and

ethnicity.
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Table 1. Mathematics Courses

Initial Course Title
CSSC
Digits

27 Algebra 1
27 Geometry
27 Algebra 2
27 Mathematics 1, General
27 Pre-Algebra
27 Analysis, Introductory
27 Consumer Mathematics
27 Basic Math 1
27 Trigonometry
27 Algebra and Trigonometry
07 Business Mathematics
27 Algebra 1, Part 1
27 Mathematics, Unified
27 Calculus, Advanced Placement
27 Algebra 3
27 Geometry, Informal
27 Mathematics 2, General
27 Geometry, Plane
27 Analytic Geometry
27 Algebra 1, Part 2
27 Mathematics 2, Unified
27 Basic Math 2
27 Mathematics 3, Unified
27 Calculus
27 Technical Mathematics
56 Resource General Math
11 Computer Mathematics
27 Mathematics Review
27 Probability and Statistics
54 General Math Skills
56 Resource Consumer Math

Abbreviation

Algl
Geo
Alg2
M1Gen
PreAlg
IntAnal
ConM
BasM
Trig
AlgTrig
BusMa
Alg1P1
MlUnif
CalAdv
Alg3
GeoInf
M2Gen
GeoP1
AnGeo
Alg1P2
M2Unif
BasM2
M3Unif
Cale
Tec_
ResGM
CompM
MRev
ProbStat
GenMS
ResCM

Note: 07 = Business and Office-related Mathematics, 11 = Corputer
and Information Sciences, 27 = Pure Mathematics, 54 = Functional
Math Skills, and 56 = Subject Area Services
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Table 2. Science Courses

Initial Course Title
CSSC
Digits

26 Other Formal Life Sciences
26 Biology, Basic 1
26 Biology, General 1
26 Biology, General 2
26 Biology, Honors 1
26 Biology, Advanced
26 Ecology
26 Marine Biology
26 Physiology, Human
30 Science, Unified
40 Other Formal Physical Sciences
40 Other Informal Physical Sciences
40 Physical Science
40 Physical Science, Applied
40 Chemistry, Introductory
40 Chemistry 1
40 Chemistry 2
40 Earth Science
40 Earth Science, College Preparatory
40 Physics, General
40 Physics, 1
40 Physics, 2

Note: 26 = Life Sciences, 30 = Unified Sciences,

Profile Analysis

Abbreviation

OFLSci
BasBiol
GenBiol
GenBio2
HonBiol
AdvBio
Ecol
MarBio
HumPhys
UnifSci
OFPSci
OIPhys
PhySci
AppPSci
IntChem
Cheml
Chem2
ESci
EScoCP
GemPhys
Physl
Phys2

40 = Physical
Sciences.

39
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Courses

Course

Multidimensional

Dim 1 Dim 2

39 Profile Analysis

Scaling Solution for Mathematics

Dim 3 Dim 4
Algl 1.6423 -0.1456 -0.7540 -0.2737
Geo 1.7248 0.3496 -0.5362 -0.2557
Alg2 1.7885 0.3161 -0.3435 -0.2513
M1Gen 0.0049 -1.3662 -1.3875 0.4357
PreAlg 0.3392 -1.5347 -1.1691 0.1974
IntAnal 0.7808 1.4431 -0.2771 -0.9734
ConM -0.2283 -1.0459 -1.5805 0.5802
BasM -0.8386 -0.8513 -1.5851 -0.0204
Trig 1.5578 0.7366 0.2271 0.9894
AlgTrig 0.0057 1.0524 -0.4276 -1.6211
BusM1 -0.3016 -1.4807 -0.3654 -1.2560
A1g1P1 -0.2377 -1.2087 0.7322 -1.5163
MlUnif -1.3988 1.3168 -0.5517 -0.5601
CalAdv -0.0786 1.8720 -0.3363 -0.5154
A1g3 1.4034 0.5120 0.0706 1.3696
GeoInf -0.0041 -1.2253 0.6674 -1.4772
M2Gen -0.8381 -0.5489 -1.5322 0.8994
GeoPl 0.6733 -0.7844 1.1898 -1.2553
AnGeo 1.5474 0.5317 0.5059 1.0185
A1g1P2 -0.1596 -1.1141 0.9818 -1.4184
M2Unif -1.4590 1.2963 -0.3127 -0.5707
BasM2 -1.1875 -0.5154 -1.3704 0.7292
M3Unif -1.4561 1.3158 -0.2362 -0.5349
Calc -0.6819 1.8351 0.1667 0.0485
TechM 1.5223 0.7726 0.2496 0.7753
ResGM -1.0697 -0.2491 0.5549 1.6468
CompM -0.1543 -0.2354 1.9290 -0.4433
MRev -0.8080 0.0594 1.8405 0.2625
ProbStat -0.3525 -0.4659 1.7880 0.7615
GenMS -0.8482 -0.2798 0.8872 1.6580
ResCM -0.8879 -0.3579 0.9748 1.5710



Table 4.

Course

Multidimensional

Dim 1 Dim 2
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Scaling Solution for Science Courses

Dim 3 Dim 4 Dim 5
OFLSci -0.3714 -0.8662 -0.5782 -0.2361 -2.1339
BasBiol -1.0971 -0.5394 -0.9531 0.3926 1.5936
GenBiol -0.7130 1.8264 -0.1648 -0.2414 0.0283
GenBio2 -0.3965 -0.2486 -0.2290 -2.2611 0.2746
HonBiol 2.0932 0.4904 0.1804 0.0382 -0.2075
AdvBio 2.0918 -0.0173 -0.3252 0.0026 0.8150
Ecol -0.3576 -0.8756 -0.6250 2.0806 0.5604
MarBio -0.3436 -0.1544 0.1842 2.3580 -0.1945
HumPhys -0.4804 0.5801 -0.3249 0.1738 -2.0053
UnifSci -1.0329 -0.0681 -1.5460 -1.0380 -0.0165
OFPSci -0.4114 -1.1728 -0.0907 0.8151 -1.8937
OIPhys -0.3377 -1.9912 -0.0065 -1.4040 -0.0323
PhySci -0.6538 1.8041 -0.4112 0.3485 0.1245
AppPSci -0.6814 -1.3177 -0.7502 0.5460 1.5744
IntChem -0.7929 -0.2766 2.0767 -0.1186 -0.0581
Cheml 0.0418 1.7628 -0.4366 -0.2817 0.0114
Chem2 2.1454 -0.2559 -0.4333 -0.2356 0.0656
ESci -1.1138 1.1361 0.2984 -0.4714 1.1354
ESciCP 0.1513 -0.6069 2.2932 0.0325 0.1309
GenPhys -0.4791 -0.3725 2.2770 -0.1254 0.2868
Physl 0.5425 1.7246 -0.3431 -0.4096 -0.0331
Phys2 2.1968 -0.5614 -0.0923 0.0350 -0.0261
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Figure 1. Factor and MDS representation of structure
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Figure 2. 2 X 2 Contingency Table of Course-taking Behavior
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